
PHYSICAL REVIEW E MARCH 2000VOLUME 61, NUMBER 3
Interaction-round-a-face density-matrix renormalization-group method applied
to rotational-invariant quantum spin chains

Wada Tatsuaki*
Department of Electrical and Electronic Engineering, Ibaraki University, Hitachi 316-8511, Japan

~Received 1 September 1999!

An interaction-round-a-face density-matrix renormalization-group~IRF-DMRG! method is developed for
higher integer spin chain models which are rotational invariant. The expressions of the IRF weights associated
with the nearest-neighbor spin-S interactionSi•Si 11 are explicitly derived. Using the IRF-DMRG with these
IRF weights, the Haldane gapsD and the ground state energy densitiese0 for both S51 andS52 isotropic
antiferromagnetic Heisenberg quantum spin chains are calculated by keeping up to onlym590 states.

PACS number~s!: 02.70.2c, 05.50.1q, 75.10.Jm, 75.40.Mg
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I. INTRODUCTION

Density-matrix renormalization-group~DMRG! method
has been a powerful numerical tool since White’s pioneer
works @1#. DMRG is a real space numerical renormalizati
method by using the reduced density matrix of a large s
tem to approximate the ground~or excited! state~s! of the
system with great accuracy. There are many DMRG appl
tions for~quasi!one-dimensional~1D! systems, e.g., quantum
systems, statistical systems, polymers, etc.~for a review see
Ref. @2#, and references therein!.

DMRG is also a variational method and closely related
the matrix product~MP! method@3–6#. In MP method the
ground state of a system, which is assumed to be expre
as a matrix product, can be obtained by minimizing the
sociated ground state energy density with respect to va
tional parameters. On the other hand DMRG method m
find the ground state of a large system, which consists
Wilsonian blocks,BL••BR, by keeping the most probablem
states for each blockBL/R. The mostm probable states ar
selected by using them-largest eigenvalues of the reduce
density matrixrL/R for each block. For an overview an
some connections to related fields including MP meth
Ref. @6# is recommended.

When a system of interest has a symmetry, the associ
eigenvalues of the density matrixr are degenerated and on
should keep the all states that corresponding to the s
eigenvalues. For example, if we consider a rotational inv
ant model, e.g., 1D isotropic Heisenberg spin models, w
the standard vertex-DMRG, we may use third componentsz
of spin as basis, then the eigenvalues of the density ma
are degenerated due to the rotational symmetry. One
needs to keep many states to improve numerical accu
with sz basis in order to get a real physics at thermodyna
limit. There have been large-scale DMRG calculations w
many states kept, for example, up tom5300 @7#, m5400
@8#, m51700 @9#, to estimate theS52 Haldane gap. How-
ever, the morem states are kept, the more computational c
is necessary since the dimension of the Hilbert space for
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superblockBL••BR is proportional tom2.
Sierra and Nishino@10# had applied the DMRG method t

interaction round a face~IRF! models and developed th
IRF-DMRG method. The advantage of using IRF-DMR
method in a system which has rotational symmetry is that
dimensions of the associated Hilbert spaces are much sm
than that in standard vertex-DMRG, since the degener
due to the symmetry has been eliminated. They had dem
strated the power of the IRF-DMRG by calculating th
ground state energies of the solid on solid~SOS! model,
which is equivalent to spin-1/2 Heisenberg chain, and tha
the restricted SOS~RSOS! model, which is equivalent to the
quantum group invariantXXZ chain. They also had sug
gested a promising potential of the IRF-DMRG when it a
plies to higher integer quantum spin chains. Such a work
not yet been done as far as I know.

In this work, the IRF-DMRG method is reviewed an
further developed for the 1D integer spin antiferromagne
Heisenberg~AFH! quantum spin chains. In IRF formulatio
the dynamics of a model can be described by a lo
plaquette operatorXi , which operates to thei th site of an
IRF state as a ‘‘diagonal to diagonal transfer matrix’’ a
their matrix elements are calledthe IRF weightsas will be
explained in the next section. We hence need the exp
expressions of the IRF weights for the higher integer qu
tum spin chain models in order to work with the IRF
DMRG.

The rest of the paper is organized as follows. In the n
section the IRF-DMRG method is reviewed. After the exp
nation of IRF formulation, the infinite system algorithm o
the IRF-DMRG is discussed. How to target the excited sta
of AFH quantum spin chains are explained and the sup
block configuration suited for targeting the excited state
the AFH spin chain is proposed. In Sec. III, the power of t
IRF-DMRG is demonstrated by applying it to bothS51 and
S52 AFH quantum spin chains. The Haldane gaps are
culated by keeping moderate number ofm states. Finally
conclusions are stated. With the help of the Wigner Eka
theorem summarized in Appendix A, I have derived the e
pression of the IRF weights for a nearest neighbor spiS
interactionSi•Si 11 in Appendix B. These expressions enab
us to work with the IRF-DMRG.
3199 ©2000 The American Physical Society
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II. REVIEW OF IRF-DMRG

The IRF-DMRG method is briefly reviewed here accor
ing to Sierra and Nishino’s paper@10#. It is instructive to
begin with a brief review of graph IRF model in somewh
general context. The IRF representation of a rotational
variant quantum spin chain is then explained with the help
the associated spin graphs. In fact 1D quantum spin ch
models can be formulated as a special case of graph
models. The algorithm of the IRF-DMRG is also reviewe
A method how to target the excited states of AFH quant
spin chains and the appropriate superblock configurations
explained.

A. Graph IRF model

In interaction round a face or face models for sh
@11,12#, a state is represented with the lattice variablesl
assigned to the lattice sites:

ul &5ul 0 ,l 1 , . . . ,l N&, ~1!

while the associated interaction is defined on a face,
plaquette of the lattice sites

Xi u . . . ,l i 21 ,l i8 ,l i 11 , . . . &

5(
l i

RS l i8

l i 21 l i 11

l i
D

3u . . . ,l i 21 ,l i ,l i 11 , . . . &, ~2!

whereR are so calledIRF weights, which play an important
role such as Boltzmann weights in usual statistical mod
The dynamics of the model is described by a plaquette
eratorXi , which consists of the associated IRF weights. T
plaquette operatorXi can be viewed as a local ‘‘diagona
transfer matrix’’ as shown in Fig. 1 in contrast with a usu
‘‘row to row transfer matrix.’’

IRF model is characterized with a selection rule whi
determines whether the adjacent lattice sites of a lattice
are admissible or not. The selection rule can be describe
its associated incident matrixL l ,l 8 , whose elements are a
either 0 or 1. IfL l ,l 850, then the lattice variablesl and
l 8 cannot be assigned to adjacent lattice sites, i.e., not
missible to each other. TheL characterizes the set of a
possible configurations which contribute to the Hamilton
or partition function of the IRF model. A configuration no

FIG. 1. Diagrammatic representation of the operation o
plaquette operatorXi on a IRF stateul 0 , . . . ,l i , . . . ,l N&, which
is drawn as a zigzag chain of the lattice sites~open circles!. The
closed circle stands for the summation over the lattice variablel i .
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derived fromL necessarily has zero IRF weight. It may b
more convenient to use a graph or diagram associated
the selection rule, orL, of an IRF model and this is called
graph IRF ~or graph face! model. Each vertex of such
graph represents a lattice sitel i , which may take values
from 1 to ni , and they are connected with line if they a
admissible.

For a rotational invariant spin chain, the correspond
selection rule is nothing but theaddition ruleof spin angular
momenta, each spin state is hence classified with the t
spin angular momentumj. The states of the chain withN
spins will be given by the setu j N ,M & ( j min<jN<jmax) of
states with total spinj N and the corresponding third compo
nentM. One of the graphical representations associated w
the addition rule of spin is the so calledspin diagram. For
example, the spin diagram forS51 spin chain is shown in
Fig. 2. The corresponding lattice variablesl i of the spin
diagram are the magnitudesj i of spin angular momenta unti
the i th spin. The height of each vertex represents the sumj i
of the spin angular momenta starting from the most left s
until the i th spin. Thei th and (i 11)th vertices are connecte
if they are admissible, i.e., if they are satisfied with the a
dition rule; u j i2Su< j i 11< j i1S, where S51 for spin-1
chain. Note thatj i takes values fromj i

min to j i
max, i.e., the

range ofj i is site dependent. An IRF state of theN spin chain
is represented by a path in the spin diagra
u*, j 1 , j 2 , . . . ,j i , . . . ,j N& and the most left vertex * is cor
responding to a vacuum stateu0&. If we know all the IRF
weights associated with a spin chain model, we can work
the IRF formulation. It is hence important to derive the e
plicit expressions for the IRF weights of the spin cha
model to apply the IRF-DMRG. In Appendix B, I have de
rived the expression of the IRF weights for the nearest ne
bor spin-S interaction and summarized the diagrammatic re
resentations and the corresponding IRF weights as a func
of spin j for the S51 isotropic AFH case in Fig. 12.

B. Algorithm

The DMRG is an iterative algorithm to approximate
target state~the ground or excited state! of a large system
which consists of the two blocks and lattice site~s!. In each

a

FIG. 2. Spin diagram forS51 chain. Each vertex represents a
IRF lattice site. The height of each site represents the total s
angular momentumj i summing from the most left vertex*
~vacuum state! until the i th spin. Admissible vertices are connecte
with lines.
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PRE 61 3201INTERACTION-ROUND-A-FACE DENSITY-MATRIX . . .
iteration each block is extended by adding one lattice site
keeping only the mostm probable states, which are select
with the density matrix constructed from the target state. T
superblock@15# is formed by the left blockBL, the middle
block which consists of a lattice point • or of two points •
and the right blockBR, which is not necessarily the reflectio
of BL.

Let me first review the infinite system algorithm@10# of
the IRF-DMRG. A Hilbert space of the superblockBL•BR

can be written as

H BL•BR
5$uja^ b^ hc&uLa,b5Lb,c51%, ~3!

i.e., a space spanned by a left block stateuja&, a middle
lattice point stateub&, and a right block stateuhc& ~see Fig.
3!, where the three lattice points~a,b,c! must be connected in
an associated spin diagram. These lattice points take va
from j i

min to j i
max, wherei 5a,b,c.

The superblock HamiltonianHBL•BR
can be constructed

from the two block HamiltoniansHBL
, HBR

and the IRF
weightsR using the following relation:

H
ja ,b,hc

ja8 ,b8,hc8S a8 b8 c8

* *

a b c
D

5Hj
j8S a8

* b

a
D db,b8dc,c8Lb,cdh,h8

1dj,j8da,a8RS b8

a c

b
D dc,c8dh,h8

1dj,j8da,a8db,b8La,bHh
h8S c8

b *

c
D .

~4!

Figure 4 shows the diagrammatic representation of the ab
equation.

We then may find the ground~or excited! state of the
superblock by using a Lanczos or similar method:

FIG. 3. Schematic diagram of the infinite IRF-DMRG alg
rithm. Each block~dotted line box! is extended by adding singl
middle lattice point • in each DMRG iteration. Thick lines represe
renormalized block states.
ut

e

es

ve

uCG&5 (
ja ,b,hc

cja ,hc

b uja^ b^ hc&, ~5!

The left density matrixrBL• is readily constructed as

r
ja

ja8S a8

* b

a
D 5(

hc

cj
a8 ,hc

b
cja ,hc

b , ~6!

The right density matrixrBR• is constructed in the simila
way if necessary.

The next step is to diagonalizerBL• to obtain the eigen-
valueswb and the associated eigenvectorsuuja

b &. Keeping the

m states associated withm-largestwb (m5(bmb) in order to
form the projection operatorT†T.

T5(
b

Tb, Tb5(
ja

uuja

b &^uja

b u . ~7!

The operatorT truncates the Hilbert spaceH BL• into H B8L
,

whereB8L represents a block with one more lattice site th
the blockBL. A new left block Hamiltonian is then formed
by using the projection operator asHB8L

5T(HBL•)T†. In
each IRF-DMRG iteration the system is extended by add
single middle site • to both blocks as shown in Fig. 3.

The infinite system algorithm for the IRF-DMRG with th
superblockBL•BR is summarized as follows:

~i! find the ground state of the superblock Hamiltonia
Eq. ~4!,

~ii ! form the left ~right! reduced density matrix
rBL• (rBR•), Eq. ~6!,

~iii ! diagonalizerBL• (rBR•) to obtain the eigenvalue
wb and the associated eigenvectorsuuja

b & (uuhc

b &),

~iv! keep them statesuuja

b & corresponding to them largest

eigenvectorswb to form the projection operatorT, Eq. ~7!,
~v! renormalize the block operators by usingT: HB8L

5T(HBL•)T†, etc.,
~vi! extend each block by adding one site •,
~vii ! repeat the processes for new blocks.

t

FIG. 4. Diagrammatic representation for the construction of
super block HamiltonianHBL•BR; each diagram is corresponding t
each term in Eq.~4!.
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3202 PRE 61WADA TATSUAKI
Next let me explain how to target the excited state of
AFH spin chain before discussing the superblock configu
tion suited for the excited state. Figure 5 shows how to tar
the excited state of the AFH spin-1 spin chain ended w
spin-1/2 spins. In order to fix the total spinST of the chain in
ST51 sector, two spin-1/2 spins that ferromagnetica
coupled with the coupling constantJF,0 are attached a
shown in Fig. 5~b!. Note that the attached two spins, whic
energetically favor a triplet state, are not coupled with
chains. Since the whole system~the chain and the two spins!
is set to a singlet state (0 sector!, the triplet state of the two
spins enforceST51 on the chain@13#.

Now let us consider the superblock configuration th
suited for targeting the excited state. In the infinite syst
algorithm of the IRF-DMRG with the superblock configur
tion of BL•BR, the middle point is singlebare siteand plays
an important role to successively improve the renormali
block Hamiltonians. In each IRF-DMRG iteration bo
blocks are renormalized with the middle site as shown in F
3. In Ref. @10# the superblock configuration ofBL•BR was
used and it is suited for targeting the ground states of A
spin chains, because the highestj site always lies in the
middle of the superblock as shown in Fig. 6. Since
ground state of an AFH quantum spin chain with evenN
spins lies in the total spin 0 sector,j N50 and obviously the
vacuum state* has zero spin, i.e.,j 050. Furthermore the
system is reflection symmetric with respect to the mid
point in the spin diagram. Thus the middle point always h
the highestj in the IRF-DMRG formulation when targetin
the ground state of the AFH spin chain. In other words,

FIG. 5. ~a! Spin diagram of the superblock for targeting th
excited state or the ground state of theS51 open spin chain ende
with S51/2 spins.~b! The corresponding spin chain ofN54 spin-
1 spins ~large hatched circles! ended with spin-1/2 spins~small
open circles!. For targeting the excited states, which has total s
ST51, ferromagnetic coupled two spin-1/2 spins are attached.

FIG. 6. ~a! Spin diagram ofS51 chain ended withS51/2 spins.
AKLT state is corresponding to the horizontal line atj 51/2. ~b!
The corresponding spin chain ofN56 spin-1 spins~large hatched
circles! ended with spin-1/2 spins~small open circles!.
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highestj of the left block, which is constructed from the le
vacuum by adding spins, coincides with that of the rig
block, which is constructed from the right vacuum, at t
middle point in the spin graph. However the situation
somewhat different for targeting the excited state which l
in ST51 sector. From Fig. 5~a!, we noticed that no single
middle point at which the highestj of the left block coincides
with that of the right one and that there is no reflection sy
metry. Hence it is better to use the superblock configurat
of BL••BR, at least when we use the infinite system meth
and renormalizeBL (BR) with the middle left ~right! site
individually as shown in Fig. 7. The associated superblo
Hamiltonian can be constructed in the way diagrammatica
shown in Fig. 8.

III. APPLICATION TO SÄ1 AND SÄ2
ANTIFERROMAGNETIC HEISENBERG

QUANTUM SPIN CHAINS

The supremity of the IRF-DMRG method is demonstrat
by applying to bothS51 and S52 quantum spin chains
Haldane’s conjecture@14# that the physics of isotropic anti
ferromagnetic quantum spin chains depend substantially
whether the spin is integer or half-integer, has been motiv
ing many physicists to study quantum spin chains.S51
AFH chain have been widely studied with various metho
@16#. It is a well known fact that the ground state of an op
S51 quantum spin chain has an effectiveS51/2 spin at
each end. White@17# had obtained the ground state ener
per site of e0>21.401484038971(4) withm5180 states
kept and the Haldane gap ofD1>0.41050(2) withm5160

n

FIG. 7. Schematic diagram of the proposed infinite IRF-DMR
algorithm. The left ~right! block is extended by adding singl
middle left ~right! point • in each IRF-DMRG iteration.

FIG. 8. Diagrammatic representation for the construction of
super block HamiltonianHBL••BR.
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states kept by using the standardsz-base DMRG.
S52 AFH quantum spin chains have also been stud

@7,8#, although the numerical calculations are much m
elaborative than that ofS51 case due to the longer correl
tion length j and due to the larger number of degrees
freedom per spin because the degeneracy due to the
symmetry. The longer correlation length means that m
longer chains~more than one thousand! are required to reach
the convergence regime to exclude the finite size effe
Schollwöck et al. @7# estimated that the gap ofD2
>0.085(5) and the ground state energy density to bee0>
24.761248(1) by using the standard DMRG with up tom
5210 states kept. Wanget al. @8# systematically analyzed
and estimated that the gapD2>0.087660.0013 with up to
m5400 states kept during DMRG calculations.

Following Schollwöck et al., I also consider the ope
spin-S AFH quantum spin chain terminated with spin-S/2
spins to cancel out the effective spin-S/2 spins:

H5JendS1•S21J (
i 52

i 5N22

Si•Si 111JendSN21•SN , ~8!

where both the coupling constantsJ andJend are set to unity
for simplicity. The spin diagram for theS51 ground state is
shown in Figs. 6 and 9. I have obtained the comparable re
of e0>21.40148403897 with the IRF-DMRG by keepin
only m580 states, which consist of 25(j 51/2), 31(j
53/2), 19(j 55/2), and 5(j 57/2)mj states, without resort
ing to a scaling technique. Note that sincemj states inj base
correspond to (2j 11)mj in sz base, the abovem580 corre-
spond tom5328 in sz base. For theS52 chain with N
'200, I have found that the ground state energy densit
e0>24.7612481(6) by keepingm590 states, which consis
of 9( j 50), 24(j 51), 27(j 52), 19(j 53), 9(j 54), and
2( j 55)mj states, hence corresponding tom5452 states in
sz base.

The finite size correction to the Haldane gapDS with open
boundary conditions is proportional to the inverse of t
square chain length according to the 1D field theory@18,19#:

FIG. 9. ~a! Spin diagram of openS52 spin chain ended with
S51 spins. The totalST51 state is targeted to find the excite
state.~b! The corresponding spin chain ofN54 spin-2 spins~large
closed circles! ended with spin-1 spins~hatched circles!. The at-
tached two spin-1/2 spins~small open circles! are coupled ferro-
magnetic or antiferromagnetic depending on the target state.
d
e

f
pin
h

s.

ult

is

D~m5`,N!5DS1
v2p2

2DSN2
1OS 1

N3D , ~9!

wherev is the spin wave velocity andDS the Haldane gap of
the spin-S AFH spin chain at the thermodynamic limit. Fig
ure 10 indicates the gapD1(m,N) as measured by the differ
ence between the lowest energy ofST51 states and that o
ST50 states, as a function of the spin chain lengthN and the
number of statesm kept in the IRF-DMRG iterations. The
excited states were obtained by using the method expla
in the previous section as shown in Figs. 5 and 7. With
simultaneous extrapolation form and 1/N, the Haldane gap
for the S51 AFH chain is estimated to beD1>0.4104(5).

Wang et al. @8# pointed out that one cannot use the e
trapolation with respect to 1/N to obtain the gap value at th
thermodynamic limit whenm is not sufficiently large: the
minimum of each curve forDS(m,N) deviates from the ver-
tical axis asm decreases; while Eq.~9! tells us the minimum
should be located just on the vertical axis in the limitm
→`. DMRG involves a systematic error associated with t
truncation or keeping a finitem states of the renormalize
Hilbert space. They thus remarked that these errors are n
serious forS51/2 or S51 AFH chains but the errors be
come crucial for higher spin chains and scaling form should
be carefully carried out. In standard DMRG calculations t
multiplicity 2S11 of spin-S is not eliminated. Then in orde
to treat the higher spin chain, the larger numberm of states
should be kept. The IRF-DMRG, however, has a great m
to eliminate the degeneracy due to the spin symmetry.
can hence keep effectively largerm states.

Figure 11 shows the gapD2(m,N), as measured by the
difference between the lowest energy ofST51 states and

FIG. 10. The gapD1(m,N) in the unit of the coupling constan
J as a function of the number of statem5( jmj kept in the IRF-
DMRG calculations and the spin chain lengthN. Each cross denote
the position of minimum for a givenm curve.
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3204 PRE 61WADA TATSUAKI
that ofST50 states, as a function of the spin chain lengthN
and the number of statesm kept in the IRF-DMRG iterations
The extrapolations are performed for bothm andN simulta-
neously and the upper estimated valueDU and lower oneDL
are obtained by using the polynomial fits with second or
and third order, respectively. The estimated Haldane gap
the S52 AFH chain isD2>0.087860.0016.

IV. CONCLUSIONS

The IRF-DMRG is reviewed and developed for high
integer quantum spin chain models which has a rotatio
symmetry. The explicit expressions of the IRF weights
the nearest neighbor spin-S interaction have been derived a
a function of total spinj. Using these IRF weights the IRF
DMRG has been applied to bothS51 and S52 isotropic
AFH quantum spin chains. With the moderate number~up to
m590) of states kept in the IRF-DMRG iterations, th
Haldane gaps and ground state energy densities were re
calculated since the degeneracy due to the spin symm
had been eliminated.
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APPENDIX A: WIGNER-ECKART’S THEOREM

The Wigner-Eckart’s theorem is briefly reviewed to d
rive the IRF weights associated with general spin-S interac-
tion in the form ofS•S8 in the next appendix. Most of the
results presented here are already known and can be fou
Ref. @4#.

Let TM
(k) be an irreducible tensor operator with an angu

momentumk and the third componentM52k, . . . ,k). TM
(k)

commutes with the total angular momentum operatorJ of a
system considered as

@Jz ,TM
(k)#5MTM

(k) , ~A1!

@Jx6 iJy ,TM
(k)#5Ak~k11!2M ~M61!TM61

(k) . ~A2!

i.e., TM
(k) is transformed as a tensor under a rotational ope

tion for the system. For example, each component of s
operatorS is expressed as

T0
(1)5Sz ,

T61
(1)5

71

A2
S6 . ~A3!

The inner product of a pair of irreducible tensorsT(k) and
U(k) is defined with

T(k)
•U(k)[ (

M52k

k

~21!2MTM
(k)U2M

(k) . ~A4!

For spin operator one readily checks the following relatio

T(1)
•T(1)5S•S. ~A5!

Wigner-Eckart’s theorem shows the matrix elements
TM

(k) are factored as a product of a configuration depend

FIG. 12. The diagrammatic representations and correspon
expressions for the IRF-weights of theS51 nearest-neighbor inter
actionSi•Si 11. In each diagram the hight of a vertex represents
magnitude of the spin angular momentum assigned to the ve
The height of the~lower! middle vertex is assumed to bej.
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part, which expressed as Wigner’s 3-j symbols or Clebsh-
Gordon ~CG! coefficients, and a configuration independe
part:

^JMuTm
(k)uJ8M 8&5~21!J2MF J k J8

2M m M 8
G~JuuT(k)uuJ8!,

~A6!

where (JuuT(k)uuJ8) are called reduced matrix element
which is independent of the configurationM or M 8. Wig-
ner’s 3-j symbol is related with CG coefficient as

F J k J8

2M m M G5
~21!J2k2M8

A2J811
^J2MkmuJ82M 8&.

~A7!

Once the reduced matrix elements are known, one get
the matrix elements with only calculations for CG coef
cients. For example one easily finds the reduced matrix
ment for spin operatorS by applying the theorem Eq.~A6! to
Sz, which is corresponding tok51 andm50, as the follow-
ing:

^SMuT0
(1)uSM8&5~21!S2MF S 1 S

2M 0 M 8
G~SuuSuuS!.

~A8!

Since the left hand side isMdM ,M8 , one gets

~SuuSuuS!5AS~S11!~2S11!. ~A9!

The following relations@4# are used to derive the expre
sion for the IRF-weights of general spin-S chain in the next
section:

^ j 1 j 2JMuT1
(k)
•T2

(k)u j 18 j 28J8M 8&

5dJJ8dMM8~21! j 21J1 j 18H j 1 j 2 J

j 28 j 18 kJ
3~ j 1uuT1

(k)uu j 18!~ j 2uuT2
(k)uu j 28!, ~A10!

~ j 1 j 2JuuT1
(k)uu j 18 j 28J8!

5d j 2 j
28
~21! j 11 j 21J81kH j 1 J j2

J8 j 18 k J
3A~2J11!~2J811!~ j 1uuT1

(k)uu j 18!,

~A11!

~ j 1 j 2JuuT2
(k)uu j 18 j 28J8!

5d j 1 j
18
~21! j 11 j 281J1kH j 2 J j1

J8 j 28 k J
3A~2J11!~2J811!~ j 2uuT2

(k)uu j 28!.

~A12!
t

all

e-

APPENDIX B: IRF WEIGHTS

I here derive the IRF weights for the following Hami
tonianH, which is invariant under rotations.

Hi ,i 115Si•Si 11 , ~B1!

where Si and Si 11 are not necessarily the same. The IR
weights for theH are expressed as the matrix elements

^~JiSi 11!,Ji 11Mi 11uSi•Si 11u~Ji8Si 11!,Ji 118 Mi 118 &,
~B2!

where u(JiSi 11),Ji 11Mi 11& is a state that the sum of spi
angular momenta until the (i 11)th spin isJi 11 and the cor-
responding third component isMi 11. TheJi 11 consists ofJi
and a spin-Si 11 spin.

Using Eq.~A10! one finds

^~JiSi 11!,Ji 11Mi 11uSi•Si 11u~Ji8Si 11!,Ji 11Mi 11&

5~21!Ji 111Ji1SH Ji Si 11 Ji 11

Si 11 Ji8 1 J
3~Si 11uuSuuSi 11!~Ji uuSuuJi8!. ~B3!

SinceuJi) can be expressed as a tensor product ofJi 21 and
spin-S, the last reduced matrix element in the above equa
may be written, with the help of Eq.~A11!, as

~Ji uuSuuJi8!5~Ji 21SiJi uuSuuJi 218 SiJi8!

5dJi 21J
i 218 ~21!Ji81Si1Ji 2111

3H Si Ji Ji 21

Ji8 Si 1 J
3A~2Ji11!~2Ji811!

3~Si uuSuuSi !. ~B4!

Hence the final expression is obtained as

RS Ji8

Ji 21 Ji 11

Ji

D
[^~JiSi 11!,Ji 11uSi•Si 11u~Ji8Si 11!,Ji 11&

5~21!Si1Si 111Ji 211Ji1Ji81Ji 1111

3S~S11!~2S11!A~2Ji11!~2Ji811!

3H Ji Si 11 Ji 11

Si 11 Ji8 1 J H Si Ji Ji 21

Ji8 Si 1 J .

~B5!
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1. SÄ1 nearest-neighbor interaction

There are thirteen nontrivial IRF-weightsR for the S51
nearest neighbor spin interactions:Si•Si 11. They can be ob-
tained by substitutingSi5Si 1151 in Eq. ~B5! and the re-
sults as a function ofj are summarized in Fig. 12 with dia
grammatic representation. In each diagram the magnitud
spin angular momentum for the middle vertex is assume
be j, and the height of each vertex represents the magni
of the spin angular momentum that assigned to the ver
The first diagram, for example, stands for
od
.
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.
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RS j

j 11 j 11

j
D 52 j /~ j 11!.

Similar results for S52 case are readily obtained wit
the help of a symbolic manipulation language such
MATHEMATICA .
-
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